Программа конференции

01.12.2022

08:00 Начало регистрации

- 09:00 Приветственное слово председателя организационного комитета <u>Бориса Ахуновича Тимеркаева</u> член-корр. АН РТ, д.ф.-м.н., зав. каф. общей физики КНИТУ-КАИ
- 09:20 Приветственное слово президента КНИТУ-КАИ Юрия Федоровича Гортышева д.т.н., профессор, академик АН РТ
- 09:40 Способ создания металлических и металл-оксидных, нано- и субмикронных частиц методом ионного распыления в потоке газа.

А. О. Софроницкий¹

¹Казанский национальный исследовательский технический университет им. А.Н.Туполева-КАИ, Казань, Россия

- 10:00 Криогенное плазменное травление пористых диэлектриков с ультранизкой диэлектрической проницаемостью А. В. Мяконьких¹, В. О. Кузьменко¹, К. В. Руденко
 - ¹ФТИАН им. К.А. Валиева РАН. Москва. Россия

10:25 Гиперлегирование кристаллов кремния и германия методами ионной имплантации и лазерного отжига для оптоэлектроники Р. И. Баталов¹

¹Казанский физико-технический институт, ФИЦ КазНЦ РАН, Казань, Россия

10:45 К 30-летию компании ФЕРРИ ВАТТ

<u>Я. О. Желонкин</u>1

гепии

¹000 "ФЕРРИ ВАТТ", Казань, Россия

11:15 Коллективная динамика неидеальной классической плазмы И.И.Файрушин¹, А.В.Мокшин¹

1 Казанский (Приволжский) федеральный университет, Казань, Россия

1:35 Исследование кинетики быстрых электронов и параметров плазмы отрицательного свечения в тлеющем микроразряде в

А. И. Сайфутдинов¹, А. А. Кудрявцев^{2, 3}, С. . Zhou³, С. . Yuan³

¹Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ, Казань, Россия

²Санкт-Петербургский государственный университет, Санкт-Петербург, Россия ³Харбинский Политехнический университет, Харбин, Китай

11:55 ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ ВЗАИМОДЕЙСТВИЯ ЛАЗЕРНЫХ ЛУЧЕЙ С ЗАМАГНИЧЕННОЙ МИШЕНЬЮ

<u>С.В. Рыжков¹,</u> Н. В. Батрак¹, Н. Г. Копалейшвили¹

**IBMSTU. Moscow. Россия

12:15 Декорирование графена гетероатомами в плазменных струях плазмотрона постоянного тока для 2D печати

<u>М. Б. Шавелкина</u>¹, И. В. Антонова^{2, 3}, Р. Х. Амиров¹, А. И. Иванов², Н. А. Небогатикова². Р. А. Соотс²

¹ОИВТ РАН. Москва. Россия

²Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия

³Новосибирский Государственный Университет, Новосибирск, Россия

12:35 ПЛАЗМОХИМИЧЕСКИЙ ПРОЦЕСС ФОРМИРОВАНИЯ ЧЕРНОГО КРЕМНИЯ И МОДИФИКАЦИЯ ЕГО СВОЙСТВ

А. В. Мяконьких¹, В. О. Кузьменко¹

¹ФТИАН им. К.А. Валиева РАН, Москва, Россия

12:45 Кинетические закономерности образования твердой фазы в водном растворе нитрата кобальта под действием тлеющего разряда

К. В. Смирнова¹, П. А. Иванова¹, А. В. Сунгурова¹, Д. А. Шутов¹, А. Н. Иванов¹, В. В. Рыбкин¹

¹Ивановский государственный химико-технологический университет, Иваново, Россия

12:55 Синтез композитных материалов в системе Cu-SiC плазмодинамическим методом

А. Р. Насырбаев¹

¹Национальный исследовательский Томский политехнический университет, Томск, Россия

13:05 Комплексное электронно-ионно-плазменное модифицирование поверхностного слоя высокохромистой стали

<u>Ю. Ф. Иванов</u>¹, В. В. Шугуров¹, А. Д. Тересов¹, Е. А. Петрикова¹, И. В. Лопатин¹ 1 ФГБУН Институт сильноточной электроники СО РАН, Томск, Россия

13:15 Разработка нового вакуумно-дугового с плазменным ассистированием метода формирования многослойных нанокристаллических высокоэнтропийных пленок и покрытий Ю. Ф. Иванов¹, Ю. Х. Ахмадеев¹, Н. Н. Коваль¹, В. В. Шугуров¹, Н. А. Прокопенко¹, Е. А. Петрикова¹, О. В. Крысина¹, О. С. Толкачев¹

¹ФГБУН Институт сильноточной электроники СО РАН, Томск, Россия

15:25 Получение карбида кремния с использованием плазмотрона без инертной среды

Р. Д. Герасимов^{1, 2}, В. В. Шеховцов²

¹Национальный исследовательский Томский политехнический университет, Томск, Россия

²Томский государственный архитектурно-строительный университет, Томск, Россия

13:35-

14:30 Обед, кофе-брейк

14:30 Исследование влияния параметров магнетронного распыления на структуру и фазовый состав на примере покрытий оксида меди

Е. Д. Воронина¹, Д. В. Сиделёв¹

¹Национальный исследовательский Томский политехнический университет, Томск, Россия

14:40 Рентгенофазовый анализ порошка карбида титана, полученного в атмосферной плазме дугового разряда

В. В. Шеховцов¹, А. А. Гумовская^{1, 2}

¹ТГАСУ. Томск. Россия ²ТПУ. Томск. Россия

14:50 Формирование интерметаллидных слоев в поверхностном слое титановых сплавов при ионно-плазменной модификации

А. А. Николаев¹, А. Ю. Назаров¹, В. Р. Мухамадеев¹

¹Уфимский университет науки и технологий, Уфа, Россия

15:00 Синтез никелевых наноструктурированных микроволокон и их композитов с углеродными нанотрубками

М. В. Морозов¹, Р. Н. Мансуров²

¹КНИТУ-КАИ, Казань, Россия

²ФИЦ КАЗНЦ РАН, Казань, Россия

15:10 Особенности структуры нанокристаллических пленок, формируемых методом ионно-стимулированного осаждения Н. М. Лядов¹, <u>И. А. Файзрахманов¹</u>

¹КФТИ ОСП ФИЦ КазНЦ РАН, Казань, Россия

15:20 Исследование полимерных плёнок, полученных из плазмы паров адамантана

В. А. Поздеев¹, А. А. Шаков², С. Ф. Ломаева², А. А. Шушков^{2, 3}, А.В. Вахрушев^{2, 3}
¹СПбАУ РАН им. Ж.И. Алфёрова;, Санкт-Петербура, Российская Федерация
²УдмФИЦ УрО РАН, Ижевск, Российская Федерация

³ИжГТУ имени М.Т. Калашникова, Ижевск, Российская Федерация

15:30 Исследование жаростойких покрытий Al-Cr на интерметаллидном сплаве BTИ-4

А. А. Маслов¹, А. Ю. Назаров¹

¹ФГБОУ ВО "Уфимский университет науки и технологий", Уфа, Россия

15:40 Исследование жаростойких покрытий Ti-Al на интерметаллидном сплаве ВТИ-4

А. Ю. Назаров¹, А. А. Маслов¹

¹ФГБОУ ВО "Уфимский университет науки и технологий", Уфа, Россия

15:50 Управляемое наноструктурирование пленок кобальта методом наклонного напыления

О. С. Трушин¹, И. С. Фаттахов^{1, 2}, А. А. Попов¹, Л. А. Мазалецкий^{1, 2}
¹ЯФ ФТИАН им. К.А. Валиева РАН, Ярославль, Россия

²ЯрГУ им. П.Г. Демидова, Ярославль, Россия

16:00 Синтез кремниевых нанотрубок в дуговой аргоновой плазме при умеренных токах

Б. А. Тимеркаев¹, <u>Е. А. Эрлингайте</u>¹, А. С. Галямов¹, С. В. Дробышев¹ ¹Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ, Казань, Россия

16:10 Электрические пробои при формировании наноструктур на поверхности вольфрама

<u>М. С. Кукушкина</u>1,², А. В. Казиев¹, Д. В. Колодко¹,²,³, М. М. Харьков¹, Г. И. Рыкунов¹,², М. М. Цвентух²

 1 НИЯУ МИФИ. Москва. Россия 2 ФИАН. Москва. Россия 3 ФИРЭ РАН. Фрязино. Россия

16:20 EFFECT OF SINGLE EXPOSURE ON BARLEY PLANTS WITH NON-THERMAL ARGON PLASMA OF ATMOSPHERIC PRESSURE S. A. Gorbatov¹

¹Ministry of Science and Higher Education of the Russian Federation Russian Institute of Radiology and Agroecology, Obninsk, Russia

16:40 Плазменная обработка углеродных волокон при создании композитов на основе высокотехнологичных полимеров П. В. Космачев¹

¹Национальный исследовательский Томский государственный университет, Томск, Россия

16:50 Формирование распыла проводящей жидкости в присутствии электрического разряда

А. С. Савельев1

¹ОИВТ РАН, Москва, Российская Федерация

17:00 Лабораторный исследовательский стенд для оптимизации процессов обработки порошковых материалов индуктивносвязанной плазмой

<u>И. С. Васильев</u>¹, М. С. Орлова¹, А. А. Терентьев¹, К. Ю. Нагулин¹, А. Х. Гильмутдинов¹

¹КНИТУ-КАИ. Казань. Россия

17:10 ОСОБЕННОСТИ ВЗАИМОДЕЙСТВИЯ ТКАНИ НА ОСНОВЕ СВМПЭ С ПОТОКОМ НИЗКОЭНЕРГЕТИЧЕСКИХ ИОНОВ В ЗАВИСИМОСТИ ОТ ЭНЕРГИИ И ПЛОТНОСТИ ИОННОГО ТОКА

<u>И. К. Некрасов</u>¹, И. Ш. Абдуллин², Ф. С. Шарифуллин³, Ф. Р. Сагитова³, Ф. А. Гизатуллина³

¹Федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет", Казань, РФ ²ООО "Плазма-ВСТ". Казань, РФ

³Казанский национальный исследовательский технологический университет, Казань, РФ

17:20 Исследование особенностей ICP разряда в установке атомнослоевого осаждения

А. М. Соболев¹, А. В. Мяконьких¹, К. В. Руденко¹ ФТИАН им. К.А. Валиева РАН, Москва, Россия

17:30-

18:00 Кофе-брейк

- 18:00 Исследование осаждения фторуглеродной пленки из плазмы Ar/CF4/H2 для реализации процесса атомно-слоевого травления В. О. Кузьменко¹, А. В. Мяконьких¹, К. В. Руденко¹
- 18:10 Формирование центров окраски "германий-вакансия" при синтезе алмаза в СВЧ плазме

А. К. Мартьянов 11, В. С. Седов 1, И. А. Тяжелов 1

¹Институт общей физики им. А.М. Прохорова Российской академии наук, Москва, Россия

18:20 Синтез в СВЧ плазме поликристаллических алмазных плёнок при сверхвысоких концентрациях метана
А. К. Мартьянов¹, В. С. Седов¹, И. А. Тяжелов¹

¹Институт общей физики им. А.М. Прохорова Российской академии наук, Москва, Россия

18:30 Исследование закономерности образования твёрдой фазы в растворе нитратов никеля и железа под действием тлеющего разряда

<u>П. А. Иванова</u>¹, К. В. Смирнова¹, А. А. Игнатьев¹, А. Н. Иванов¹, В. В. Рыбкин¹, Д. А. Шутов¹

¹Ивановский государственный химико-технологический университет, Иваново, Россия

18:40 ИСПОЛЬЗОВАНИЕ ПЛАЗМЫ ИМПУЛЬСНОГО ПОДВОДНОГО РАЗРЯДА ДЛЯ ПОЛУЧЕНИЯ ФОТОАКТИВНЫХ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ НАНОМАТЕРИАЛОВ ПОЛИВИНИЛОВЫЙ СПИРТ - НАНОЧАСТИЦЫ ОКСИДОВ МЕТАЛЛОВ

Н. А. Сироткин¹, А. В. Хлюстова¹, В. А. Титов¹

18:50 Исследование получения соединений типа шпинель при воздействии плазмы атмосферного давления на нитраты кобальта и железа.

С. И. Карташов¹, К. В. Смирнова¹, А. Н. Иванов¹, Д. А. Шутов¹, В. В. Рыбкин¹ Ивановский государственный химико-технологический университет, Иваново, Россия

19:00 Структура, оптические и фотоэлектрические свойства гиперлегированных слоёв Ge:Sb, полученных ионным распылением и импульсным отжигом

Г. А. Новиков¹, Р. И. Баталов¹, И. А. Файзрахманов¹

¹Казанский физико-технический институт, ФИЦ КазНЦ РАН, Казань, Россия

19:10 СИНТЕЗ ГЕРМАНИЕВЫХ НАНОСТРУКТУР В АРГОНОВОЙ ДУГЕ ПРИ УМЕРЕННЫХ ТОКАХ.

Б. А. Тимеркаев¹, <u>В. С. Степанова</u>¹, Р. М. Сулейманов¹, Г. Р. Фархутдинова¹ ¹Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ. Казань. Россия

19:20 СИНТЕЗ ВОДОРОДА И УГЛЕРОДНЫХ НАНОСТРУКТУР В ДУГОВОМ РАЗРЯДЕ В ТЯЖЕЛЫХ УГЛЕВОДОРОДАХ.

Б. А. Тимеркаев¹, Г. Р. Фархутдинова¹, <u>Н. Г. Андреева</u>¹, Б. Р. Шакиров¹, А. Г. Иванова¹

¹Казанский национальный исследовательский технический университет им. А.Н.Туполева (КНИТУ-КАИ), Казань, Россия

19:30-

21:00 Стендовые доклады

C-01 СИНТЕЗ ФАЗЫ Mg2SiO4 В СРЕДЕ ТЕРМИЧЕСКОЙ ПЛАЗМЫ АТМОСФЕРНОГО ДАВЛЕНИЯ

<u>В. В. Шеховцов</u>¹, О. А. Кунц¹, А. Б. Улмасов¹, Р. Ю. Бакшанский¹

¹Томский государственный архитектурно-строительный университет, Томск, Россия

С-02 Анализ структуры и свойств покрытий ВЭС Fe-Co-Cr-Ni-Mn и Fe-Co-Cr-Ni-Al, сформированных на подложке из сплава 5083 М. О. Ефимов¹, В. Е. Громов¹, Ю. Ф. Иванов², С. В. Коновалов¹, И. А. Панченко¹, Ю. А. Шлярова¹

¹Сибирский государственный индустриальный университет, Новокузнецк, Россия ²Институт сильноточной электроники СО РАН, Томск, Россия

C-03 Структура сплава системы Al-Si, подвергнутого двухэтапному модифицированию

<u>Ю. А. Шлярова</u>¹, Д. В. Загуляев¹, В. В. Шляров¹, В. Е. Громов¹, И. А. Панченко¹ Сибирский государственный индустриальный университет, Новокузнецк, Россия

C-04 Морфология стеклокристаллического материала анортитовой фазы, полученного плазменным синтезом

М. А. Семеновых¹, Н. К. Скрипникова¹, В. В. Шеховцов¹

¹Томский государственный архитектурно-строительный университет, Томск, Россия

C-05 ПЛАЗМЕННЫЙ СИНТЕЗ НАНОСТРУКТУР ДЛЯ УЛУЧШЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКИХ СВОЙСТВ

С. В. Гайнуллина¹

1КНИТУ-КАИ. Казань. Россия

C-06 Повреждение органосиликатных low-k плёнок при осаждении барьерных слоёв тантала методом IPVD

A. O. Серов¹, <u>A. H. Рябинкин¹</u>, A. C. Вишневский², С. Наумов³, А. Ф. Паль¹, T. B. Рахимова¹, Д. С. Серёгин², К. А. Воротилов², М. Р. Бакланов⁴ ¹НИИЯФ МГУ, Москва, Россия ²РТУ МИРЭА, Москва, Россия ³IOM, Leipzig, Germany ⁴EUROTEX, Brussels, Belgium

С-07 СИНТЕЗ МНОГОСЛОЙНЫХ НАНОСТРУКТУР HF-TI-N ИЗ ПЛАЗМЕННОЙ ФАЗЫ

М. М. Миронов¹, М. М. Гребенщикова¹

¹ФГБОУ ВО КНИТУ, Казань, Россия ²EUROTEX, Brussels, Belgium

С-08 ЭЛЕКТРОЛИТНО-ПЛАЗМЕННЫЙ СПОСОБ ПОЛУЧЕНИЯ НАНОГРАФИТА КАТОДНОЙ ЭКСФОЛИАЦИЕЙ

 $\underline{\mathsf{E}}$. А. Грушевский , Н. Г. Савинский , М. А. Смирнова , Д. Э. Пухов , Р. В. Селюков

¹ЯрГУ им. П.Г. Демидова, Ярославль, Россия

²ЯФ ФТИАН им. К.А. Валиева РАН, Ярославль, Россия

C-09 Аналитическая оценка свойств покрытий, нанесенных плазменным методом напыления

Г. И. Трифонов¹

¹Федеральное государственное казённое военное образовательное учреждение высшего профессионального образования «Военный учебно-научный центр Военно-воздушных сил «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина» (г. Воронеж)

C-10 Моделирование плазменных процессов при формировании углеродных наноструктур

Д. Н. Бухаров¹, С. М. Аракелян¹

¹ВлГУ, Владимир, Россия

С-11 Погруженный в электролит плазменный разряд как метод полировки для формирования наноразмерных матриц из анодированного оксида алюминия

Е. А. Грушевский¹, Н. Г. Савинский², О. С. Трушин²

¹ЯрГУ им. П.Г. Демидова, Ярославль, ²ЯФ ФТИАН им. К.А. Валиева РАН, Ярославль

С-12 Моделирование тепловых полей при импульсном лазерном легировании конструкционных сталей

А. Р. Хаиткулов¹, А. В. Асылбаев¹, <u>Р. С. Есипов</u>¹

 1 ФГБОУ ВО УУНИТ, Уфа, Россия

C-13 Термодинамическая оценка получения карбида вольфрама из его оксида с использованием плазмы метана

С. Д. Попов¹, Д. И. Субботин¹, М. В. Обрывалин¹, Е. О. Серба¹, В. А. Сподобин¹, А. В. Суров¹, Г. В. Наконечный¹, А. В. Никонов¹

1/1/93 РАН, Санкт-Петербург, Россия

C-14 О неравновесности температурных полей в индукционносвязанной плазме

А. В. Герасимов¹, Р. Н. Гайнуллин¹,

¹Казанский национальный исследовательский технологический университет, Казань

C-15 Развитие предпробойной стадии импульсного разряда в проводящей воде под действием ультразвука

А. А. Филаткин¹, В. А. Панов², В. Я. Печеркин², Л. М. Василяк², С. П. Ветчинин²

¹Московский физико-технический институт, Москва, Россия

²Объединённый институт высоких температур РАН, Москва, Россия

C-16 СИНТЕЗ ШПИНЕЛИ MGAL2O4 МЕТОДОМ ПЛАЗМЕННОЙ ПЛАВКИ КОМПОНЕНТОВ

В. В. Шеховцов¹, Н. К. Скрипникова¹, О. А. Кунц¹, <u>А. Б. Улмасов</u>¹

¹Томский государственный архитектурно-строительный университет, Томск, Россия

C-17 Моделирование взаимодействия реакционноспособных газов с полимерными материалами в высокочастотной плазме пониженного давления

Ю. А. Тимошина¹. Э. Ф. Вознесенский¹

¹ФГБОУ ВО "КНИТУ", Казань, Россия

C-18 Дискретезированная модель конденсации наночастиц в плазме дугового разряда низкого давления

Л. Ю. Федоров¹, А. В. Ушаков¹, И. В. Карпов¹

¹Федеральный исследовательский центр Красноярский научный центр СО РАН, Красноярск, Россия

C-19 Детальная трёхмерная модель электромагнетизма и тепломассопереноса в технологической плазменной установке для газофазной обработки порошковых материалов

А. С. Мельников¹, И. В. Цивильский¹

¹КНИТУ-КАИ им. А. Н. Туполева, Казань, Россия

C-20 Численное моделирование процессов газодинамики в ВЧплазмотроне ВЧИ -11/60

А. В. Герасимов¹, А. Д. Байтимиров², М. Л. Шустрова¹

¹ФГБОУ ВО "КНИТУ". Казань. Россия

²ФГАОУ ВО "Казанский (Приволжский) федеральный университет", Казань, Россия

С-21 РЕАКТИВНЫЙ МАГНЕТРОННЫЙ СИНТЕЗ И ИССЛЕДОВАНИЕ МОРФОЛОГИИ, ВАЛЕНТНОГО СОСТАВА И ОПТИЧЕСКИХ СВОЙСТВ ОКСИНИТРИДА ВОЛЬФРАМА

И. Ф. Маликов^{1, 2}, Н. М. Лядов¹, Л. Р. Тагиров¹

¹Казанский физико-технический институт им. Е.К. Завойского ФИЦ КазНЦ РАН, Казань, Россия

²Институт физики, Казанский федеральный университет, Казань, Россия

С-22 КОМБИНИРОВАННЫЙ РЕАКТИВНЫЙ МАГНЕТРОННЫЙ СИНТЕЗ И ИССЛЕДОВАНИЕ МОРФОЛОГИИ, ЭЛЕМЕНТНОГО И ВАЛЕНТНОГО СОСТАВА И ОПТИЧЕСКИХ СВОЙСТВ ОКСИДА ВОЛЬФРАМА, ЛЕГИРОВАННОГО МОЛИБДЕНОМ

И. Ф. Маликов^{1, 2}, Н. М. Лядов¹, Л. Р. Тагиров¹

¹Казанский физико-технический институт им. Е.К. Завойского ФИЦ КазНЦ РАН, Казань, Россия

²Институт физики, Казанский федеральный университет, Казань, Россия

C-23 Математическое моделирование взаимодействия ВЧ плазмы пониженного давления с наночастицами серебра

Е. А. Панкова¹, <u>Г. Р. Рахматуллина</u>¹ ФГБОУ ВО "КНИТУ", Казань, Россия

С-24 Моделирование структуры нанокластеров фосфора

<u>Д. В. Рыбковский</u>^{1,2}, С. В. Лепешкин^{1,2,3,4}, В. С. Батурин^{1,2,4}, А.А. Михайлова^{1,2}

¹Сколковский институт науки и технологий, Москва, Россия

 2 Институт общей физики им. А.М. Прохорова РАН, Москва, Россия

 3 Физический институт им. П.Н. Лебедева РАН, Москва, Россия

⁴Институт геохимии и аналитической химии им. В.И. Вернадского РАН, Москва, Россия

C-25 Зависимость параметров индукционно связанной плазмы от расхода газа

В. С. Желтухин¹, А. Ю. Шемахин¹, Е. Ю. Шемахин¹, \underline{T} , \underline{H} , \underline{T} Терентьев¹ 1 $K\Phi Y$, Kasahb, $P\Phi$

 2 Институт геохимии и аналитической химии им. В.И. Вернадского РАН, Москва, Россия

С-26 Построение двухступенчатого приближения для радиальной функции распределения двумерной жидкости Юкавы Т. И. Кадыров¹, И. И. Файрушин¹

¹Казанский (Приволжский) федеральный университет, Казань, Россия

С-27 Экспериментальное исследование кулоновских систем заряженных частиц различных размеров в линейной электродинамической ловушке при атмосферном давлении.

<u>Д. И. Попов</u>^{1, 2}, В. И. Владимиров², В. Я. Печеркин², Л. М. Василяк² ¹МФТИ, Долгопрудный, Россия

мФти, долеопруоный, т оссих

²ОИВТ РАН. Москва. Россия

С-28 ФШС-параметризация нерегулярностей динамических переменных солнечной активности

С. А. Демин¹, В. А. Юнусов¹, С. Ф. Тимашев²

¹Казанский федеральный университет, Казань, Россия

²Национальный исследовательский ядерный университет «МИФИ́» (Московский инженерно-физический институт), Москва, Россия

С-29 ИССЛЕДОВАНИЕ АНТИСТАТИЧЕСКИХ СВОЙСТВ ВОЛОКНИСТЫХ МАТЕРИАЛЛОВ С ВАККУМНО-ПЛАЗМЕНЫМИ ПОКРЫТИЯМИ

<u>Д. А. Хайруллов</u>¹, Э. Ф. Вознесенский¹, К. Н. Каримов¹, А. Е. Карноухов¹, Ю. А. Тимошина¹, М. М. Гребенщикова¹, М. В. Антонова¹, Я. О. Желонкин¹, Е. А. Когогин¹

¹КНИТУ КХТИ, Казань, Россия

C-30 Продукты плазмохимической обработки хитозана как антимикробные агенты и стимуляторы роста растений

И. К. Наумова¹, В. А. Титов², Н. А. Сироткин², А. В. Хлюстова²

¹Ивановский государственный университет, Иваново, Россия

C-31 Обработка битуминозной породы высокочастотным емкостным разрядом

А. Р. Гарифуллин¹, М. Ф. Шаехов

¹ФГБОУ ВО «КНИТУ», г Казань, Россия

C-32 Обработка поверхности кремния локализованным газовым разрядом

А. В. Абрамов¹, Е. А. Панкратова²

¹Воронежский государственный технический университет, Воронеж, Россия

C-33 Моделирование влияния высоких температур при лазерной абляции на строение металла

<u>А. Н. Гостевская</u>¹, А. В. Маркидонов^{1, 2}, И. А. Панченко¹, В. К. Дробышев¹

¹Сибирский государственный индустриальный университет, Новокузнецк, Россия

²Кузбасский гуманитарно-педагогический институт Кемеровского государственного университета, Новокузник, Россия

С-34 Радиационно-плазмодинамические структуры и спектрально- яркостные характеристики МПК-разрядов

Н. В. Батрак¹, Н. Г. Копалейшвили¹

¹Московский Государственный Технический Университет им. Н.Э. Баумана, Москва, Россия

C-35 Эффект облучения импульсной ксеноновой лампой на антиоксидантный потенциал крови

<u>П. А. Чиликина</u>¹, Д. О. Новиков¹, М. М. Созарукова

¹МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

С-36 Моделирование и численный расчет системы охлаждения мощных полупроводниковых преобразователей энергии для термоядерных технологий.

С. И. Каськов1

¹МГТУ им. Н.Э. Баумана, Москва, Россия

C-37 Исследование поверхности зеркал Al-MgF₂ после экспозиции высокояркостным ВУФ излучением

Д. С. Пасынкова¹, П. А. Новиков², Д. О. Новиков¹, В. Д. Телех¹, А. С. Скрябин¹ ¹МГТУ им. Н.Э. Баумана, Москва, Россия

²АО "НИИ НПО "ЛУЧ". Подольск. Россия

²Институт химии растворов им. Г.А. Крестова Российской академии наук, Иваново

²Военно-воздушная академия имени профессора Н. Е. Жуковского и Ю. А. Гагарина, Воронеж, Россия

02.12.2022

08:00

Начало регистрации

09:00 СТРУКТУРЫЙ ЦВЕТ. ПОЛУЧЕНИЕ ЦВЕТНОГО СЛОЯ НАНОСТРУКТУРИРОВАННОГО АМОРФНОГО КРЕМНИЯ ПРИ ТРАВЛЕНИИ В ХЛОРСОДЕРЖАЩЕЙ ПЛАЗМЕ

И. И. Амиров¹, А. . Куприянов¹, М. . Изюмов¹

¹Ярославский Филиал Физико-технологического института им. К.А. Валиева РАН, Ярославль. Россия

09:20 Об особенностях светоэрозии материалов при воздействии ВУФ излучения высокой плотности мощности

А. В. Павлов¹, Ю. Ю. Протасов¹, <u>В. Д. Телех</u>¹, Т. С. Щепанюк¹ ¹*МГТУ им. Н.Э. Баумана. Москва, Россия*

09:40 Синтез наноструктурированных покрытий при воздействии плазмы атмосферного разряда

<u>К. П. Савкин</u>¹, Е. М. Окс^{1, 2}, Г. Ю. Юшков¹, А. С. Бугаев¹, А. Г. Николаев¹, М. В. Шандриков¹

¹ИСЭ СО РАН, Томск, Россия

²ТУСУР, Томск, Россия

09:50 Синтез Y3Al5O12:Се и формирование алмазных композитов со сверхъяркой фотолюминесценцией

<u>И. А. Тяжелов</u>¹, А. К. Мартьянов¹, С. В. Кузнецов¹, В. С. Седов¹, В. А. Тарала², Д. С. Вакалов²

¹Институт общей физики им. А.М. Прохорова Российской академии наук, Москва, Россия ²Северо-Кавказский Федеральный университет. Ставрополь. Россия

10:00 Синтез алмазных покрытий из высокоскоростной струи смеси газов, активированных СВЧ разрядом.

А. А. Емельянов¹, М. Ю. Плотников¹, А. К. Ребров¹, Н. И. Тимошенко^{1, 2}, <u>И. Б.</u> Юдин¹

¹ИТ СО РАН. Новосибирск. Россия ². Новосибирск. Россия

10:10 Направленность плазмохимического превращения этилена в барьерном разряде

А. Ю. Рябов¹, С. В. Кудряшов¹

¹ИХН СО РАН, Томск, Россия

10:20 Свойства продуктов окисления бензола в барьерном разряде для ингибирования асфальтосмолопарафиновых отложений А. В. Лещик¹, А. Ю. Рябов¹, Т. В. Петренко¹, А. Н. Очередько¹, И. В.

Прозорова¹, С. В. Кудряшов¹

¹ИХН СО РАН, Томск, Россия

10:30 ПРОФИЛЬ РАСПРЕДЕЛЕНИЯ ЭЛЕМЕНТОВ ПО ГЛУБИНЕ ТОНКИХ ПЛЕНОК НИТРИДА АЛЮМИНИЯ ПРИ МАГНЕТРОННОМ ФОРМИРОВАНИИ

<u>Л. В. Баранова^{1, 2},</u> Б. Т. Байсова^{1, 2}, В. И. Струнин^{1, 2, 3}

¹ФГАОУ ВО "ОмГУ им Ф.М. Достоевского", Омск, Российская Федерация

²Омский научный центр СО РАН (Институт радиофизики и физической электроники), Омск. Российская Фе∂ерация

³Омский научно-исследовательский институт приборостроения, Омск, Российская Федерация

10:40 Моделирование кинетики радикально-цепного пиролиза метана в барботажном реакторе

<u>А. И. Пушкарев¹, С. С</u>. Полисадов¹, Г.Е. Холодная¹, Д.В. Пономарев¹

1Томский политехнический университет. Томск. Россия aipush@mail.ru

10:50 Особенности получения магнетита плазмодинамическим методом в среде различных газов

А. И. Циммерман^{1, 2}, И. И. Шаненков^{1, 2}, А. Р. Насырбаев²

¹Тюменский государственный университет, Тюмень, Россия

²Томский политехнический университет, Томск, Россия

11:00 ИССЛЕДОВАНИЕ ВОЗДЕЙСТВИЯ ЭНЕРГИИ НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЫ НА ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ СОСНЫ

Г. Г. Волокитин¹, А. А. Клопотов¹, О. Г. Волокитин¹, <u>В. А. Черемных</u>¹, Г. Г. Волокитин¹

¹Томский государственный архитектурно-строительный университет, Томск, Россия

11:10 Основные режимы коронного разряда с острия, имеющего малый радиус кривизны

В. Ф. Тарасенко¹, Е. Х. Бакшт¹, В. А. Панарин¹ ¹ИСЭ СО РАН. Тотяк, Россия

11:20 Структурирование YBCO пленок методом лазерной литографии И. С. Позыгун¹, Г. М. Серопян¹, С. А. Сычев¹, Д. В. Федосов¹, А. А. Теплоухов²

¹ФГАОУ ВО «ОмГУ им. Ф.М. Достоевского», Омск, Российская Федерация

²ФГАОУ ВО «ОмГТУ», Омск, Российская Федерация

11:30 ЗАЩИТНЫЕ ХРОМОВЫЕ ПОКРЫТИЯ ДЛЯ ЦИРКОНИЕВЫХ СПЛАВОВ

<u>Д. В. Сиделёв</u>¹, Е. Б. Кашкаров¹, В. Н. Кудияров¹, А. Г. Мальгин², И. А. Шелепов², Н. С. Сабуров²

¹Томский политехнический университет, Томск, Россия

11:40 ИССЛЕДОВАНИЕ ОДНОРОДНОСТИ ВОЗДЕЙСТВИЯ НА ПОВЕРХНОСТЬ ПЛОСКОГО АНОДА ПЛАЗМЫ ВЫСОКОВОЛЬТНОГО РАЗРЯДА НАНОСЕКУНДНОЙ ДЛИТЕЛЬНОСТИ

М. И. Ломаев^{1, 2}, В. Ф. Тарасенко¹

¹Институт сильноточной электроники СО РАН, Томск, Россия

11:50 Формирование высокопрочных и термически-стойких поверхностных слоёв в заэвтектических силуминовых сплавах <u>Е. А. Петрикова</u>¹, Ю. Ф. Иванов¹, А. Д. Тересов¹, М. Е. Рыгина¹

¹Институт сильноточной электроники, Томск, Россия

12:00 Термохимический синтез сиалона при помощи облучения низкотемпературной плазмы и электронным импульсным пучком порошковой смеси AIN и Si3N4

<u>А. А. Клопотов</u>¹, В. А. Власов², К. А. Безухов¹, Ю. С. Саркисов¹, М. С. Сыртанов³, Г. Г. Волокитин, Ю. Ф. Иванов⁴

12:10-

²Акционерное общество «Высокотехнологический научно-исследовательский институт неорганических материалов имени академика А. А. Бочвара», Москва, Россия

²Национальный исследовательский Томский государственный университет, Томск, Россия

¹Томский государственный архитектурно-строительный университет, Томск, Россия

²Томский государственный архитектурно-строительный университет, , Россия

³Национальный исследовательский Томский политехнический университет, Томск, россия

⁴Институт сильноточной электроники СО РАН, Томск, Россия

12:40 Моделирование дуговых разрядов в инертных газах с тугоплавкими и нетугоплавкими электродами

А. И. Сайфутдинов¹, А. Р. Сорокина¹, А. А. Абдуллин¹, Б. А. Тимеркаев¹ 1Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ, Казань

12:50 ИССЛЕДОВАНИЕ КОРОТКОДУГОВОГО КСЕНОНОВОГО РАЗРЯДА ВЫСОКОГО ДАВЛЕНИЯ С УЧЁТОМ ЭМИССИИ МАТЕРИАЛА КАТОДА В ПЛАЗМУ

Н. А. Тимофеев¹, Д. К. Солихов², <u>И. Ю. Мухараева</u>¹
¹Санкт-Петербургский государственный университет, Санкт-Петербург, Россия
²Таджикский национальный университет, Душанбе, Таджикистан

13:00 ВЛИЯНИЕ ФОРМЫ ПОВЕРХНОСТИ ЭЛЕКТРОДА НА ХАРАКТЕРИСТИКИ КОРОТКОДУГОВОГО КСЕНОНОВОГО РАЗРЯДА ВЫСОКОГО ДАВЛЕНИЯ

Н. А. Тимофеев¹, Д. К. Солихов², И. Ю. Мухараева¹

¹Санкт-Петербургский государственный университет, Санкт-Петербург, Россия ²Таджикский национальный университет. Душанбе. Таджикистан

13:10 Параметры газовых потоков высоковольтного плазмотрона А. В. Суров¹, Н. Ю. Быков¹,², Н. В. Образцов¹,², А. А. Дьяченко¹, Е. О. Серба¹, А. В. Никонов¹, Г. В. Наконечный, С. Д. Попов¹, В. А. Сподобин¹, М. Э. Пинчук¹ 1/// 39 РАН, Санкт-Петербург, Россия 2 СПбПУ, Санкт-Петербург, Россия

13:20 Гибридная модель плазмотрона постоянного тока с учетом влияния параметров источника питания

<u>Н. В. Образцов</u>¹, Ю. В. Мурашов¹, Р. И. Жилиготов¹, Н. К. Куракина¹ ¹Санкт-Петербургский Политехнический университет Петра Великого, Санкт-Петербург, Россия

13:30 Микроскопические структурные особенности фуллереновых смесей

Р. М. Хуснутдинов¹, Р. Р. Хайруллина¹

¹Казанский (Приволжский) федеральный университет, Казань, Россия

13:40 Геном наноматериалов и нейронные сети В. С. Абруков¹, Д. А. Ануфриева¹, Е. В. Данилов¹ 1ФГБОУ ВО «ЧГУ им. И.Н. Ульянова», г. Чебоксары, Россия

13:50 МОДЕЛИРОВАНИЕ ЭЛЕКТРОННЫХ И ОПТИЧЕСКИХ СВОЙСТВ КЛАТРАТНЫХ СТРУКТУР SI И SH

<u>М. Б. Юнусов</u>¹, Р. М. Хуснутдинов^{1, 2} ${}^{1}K(\Pi)\Phi Y$, Казань, Россия ${}^{2}УроРАН$, Ижевск, Россия

14:00 Критические параметры формирования наноразмерных полостей в однокомпонентных аморфных системах Б. Н. Галимзянов¹, А. В. Мокшин¹

¹Казанский федеральный университет. Казань. Россия

14:10 Влияние морфологии нанопористого нитинола на его механические свойства

Г. А. Никифоров¹, Б. Н. Галимзнов¹, А. В. Мокшин¹

¹Казанский (Приволжский) Федеральный Университет, Казань, Россия

14:20 Структурные особенности жидкого висмута: анализ и характеризация структур

<u>А. А. Цыганков</u>¹, Б. Н. Галимзянов¹, А. В. Мокшин¹

¹Казанский (Приволжский) Федеральный Университет, Казань, Россия

14:30 Моделирование охлаждения однокомпонентной системы Леннард-Джонса со скоростями, приближенными к экспериментально реализуемым

А. Р. Фархутдинов¹

¹Казанский (Приволжский) федеральный университет, Казань, Россия

14:40 Атомистическое моделирование наночастиц Si-Al методом молекулярной динамики

А. И. Зеленина^{1, 2}, И. С. Гордеев², Л. Н. Колотова³

¹МФТИ, Долгопрудный, Россия ²ОИВТ РАН, Москва, Россия ³НИУ ВШЭ, Москва, Россия

14:50 Моделирование методом молекулярной динамики низкоэнергетического распыления ионами аргона наноструктурированной поверхности кремния

А. Н. Куприянов¹, И. И. Амиров¹

¹ЯФ ФТИАН им. К.А.Валиева РАН, Ярославль, Россия

15:00 НЕЙРОСЕТЕВЫЕ МОДЕЛИ ФОТОСЕНСОРОВ НА МЕТАЛЛОУГЛЕРОДНЫХ ПЛЕНКАХ

<u>А. В. Смирнов</u>¹, В. С. Абруков¹, Е. С. Тюнтеров¹, Д. В. Петров¹, А. В. Кокшина¹, Г. М. Сорокин, А. И. Никитин

¹ЧГУ им. И.Н. Ульянова, Чебоксары, Россия

15:10 ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ДИНАМИКИ ГАЗОВЗВЕСЕЙ С МАССОВОЙ И ПОВЕРХНОСТНОЙ ПЛОТНОСТЯМИ ЗАРЯДА

Д. А. Тукмаков¹, Н. А. Тукмакова²

 1 ИММ ФИЦ КазНЦ РАН, Казань, РФ 2 КНИТУ-КАИ, Казань, РФ

15:20 СТРУЙНАЯ ЭЛЕКТРОЛИТНО-ПЛАЗМЕННАЯ ОБРАБОТКА КАК СПОСОБ ПОЛИРОВКИ ПОВЕРХНОСТИ СЛОЖНОПРОФИЛЬНЫХ ИЗДЕЛИЙ АДДИТИВНОГО ПРОИЗВОДСТВА

М. Д. Белов¹, А. А. Терентьев¹, К. Ю. Нагулин¹, А. Х. Гильмутдинов¹ ¹КНИТУ-КАИ им. А.Н.Туполева, Казань. Российская Федерация

15:30 РАСЧЕТ КОНЦЕНТРАЦИИ ЗАРЯЖЕННЫХ ЧАСТИЦ В НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЕ ДИФФУЗИОННОГО ПЛАМЕНИ ПРОПАНА С ИНЕРТНОЙ ДОБАВКОЙ ГЕЛИЯ ПРИ НЕДОСТАТКЕ ОКИСЛИТЕЛЯ

А. С. Бобров¹

 1 ФГБОУ ВО ВятГУ, Киров, РФ

15:40 Ионизация атомов гелия трёхзарядными катионами металлов при лазерной абляции в сверхтекучем гелии

Р. Е. Болтнев 1,2 , <u>А. В. Карабулин</u> 1,3 , В. И. Матюшенко 2 , И. Н. Крушинская 2 , А. А. Пельменев 2

15:50 Изучение компонентов плазморастворных систем переменного тока

I. I. Oshenko¹. S. A. Smirnov¹

¹Ivanovo State University of Chemistry and Technology, Ivanovo, Russia

16:00-

16:30 Кофе-брейк

16:30 ИССЛЕДОВАНИЯ УЛЬТРАХОЛОДНОЙ ПЫЛЕВОЙ ПЛАЗМЫ В ТЛЕЮЩЕМ РАЗРЯДЕ ПОСТОЯННОГО ТОКА

<u>Р. Е. Болтнев</u>^{1, 2, 3}, М. М. Васильев^{1, 3}, А. В. Карабулин¹, Е. А. Кононов^{1, 3}, Ф. М. Трухачёв^{1, 3}, О. Ф. Петров^{1, 3}

¹Объединенный институт высоких температур РАН, Москва, Россия

²Филиал федерального исследовательского центра химической физики им. Н.Н. Семёнова РАН, Черноголовка, Россия

³Федеральный исследовательский центр проблем химической физики и медицинской химии РАН, Черноголовка, Россия

¹Объединённый институт высоких температур РАН, Москва, Россия

²Филиал федерального исследовательского центра химической физики им. Н.Н. Семёнова РАН, Черноголовка, Россия

³Московский физико-технический институт, Долгопрудный, Россия

16:40 Экспериментальное исследование эффективного нарушения симметрии взаимодействия микрочастиц в газовых разрядах Э. А. Саметов^{1, 2}, Е. А. Лисин^{1, 2}, Е. А. Кононов^{1, 2}, О. С. Ваулина^{1, 2}, М. М. Васильев^{1, 2}, О. Ф. Петров^{1, 2}

¹ОИВТ РАН, Москва, Россия ²МФТИ (НИУ), Москва, Россия

16:50 АКТИВНОЕ БРОУНОВСКОЕ ДВИЖЕНИЕ ЧАСТИЦ В КВАЗИОДНОМЕРНЫХ (НИТЕВИДНЫХ) СТРУКТУРАХ

<u>А. С. Светлов</u>^{1,2}, Е. А. Кононов^{1,2}, О. Ф. Петров^{1,2}, М. М. Васильев^{1,2}

¹Объединённый институт высоких температур РАН, Москва, Россия

²Московский физико-технический институт (национальный исследовательский университет), Долгопрудный, Россия

17:00 УСТОЙЧИВЫЕ И НЕУСТОЙЧИВЫЕ ТРАЕКТОРИИ ДВИЖЕНИЯ ЗАРЯЖЕННОЙ ЧАСТИЦЫ В ЛИНЕЙНОЙ ЭЛЕКТРОДИНАМИЧЕСКОЙ ЛОВУШКЕ В ВОЗДУХЕ

М. С. Доброклонская¹, Л. М. Василяк¹, В. Я. Печеркин²

¹Объединенный институт высоких температур РАН, Москва, Россия

17:10 Перспективные направления исследований электрических ракетных двигателей высокой мощности
А. И. Шумейко^{1, 2}

¹Московский государственный технический университет им. Н.Э. Баумана, Москва ²ООО "Эдвансд Пропалшн Системс", Москва, Россия

17:20 МОДЕЛИРОВАНИЕ ПРОЦЕССА ВЫРОЖДЕНИЯ ТЕХНИЧЕСКОЙ СИСТЕМЫ УПРАВЛЕНИЯ ВЫСОКОТЕМПЕРАТУРНЫМИ ПРОЦЕССАМИ С ЧЕЛОВЕКОМ-ОПЕРАТОРОМ В СВОЕМ СОСТАВЕ

М. В. Сержантова¹, Н. А. Дударенко², О. С. Нуйя¹

¹ФГАОУ "Санкт-Петербургский государственный университет аэрокосмического приборостроения", Санкт-Петербург, Россия

 2 ФГАОУ "Национальный исследовательский университет ИТМО, Санкт-Петербург, Россия

17:30 Исследование деградации зеркал на основе Al/MgF2 при облучении мощным широкополосным ВУФ/УФ излучением А. С. Скрябин¹, В. Д. Тепех¹, А. В. Павлов¹, П. А. Новиков², В. Г. Жупанов², Д. А. Чесноков², В. М. Сенков³, А. Г. Турьянский³

"МГТУ им. Н.Э. Баумана, Москва" ²АО "НИИ НПО ЛУЧ", Подольск ³ФИАН им. П.Н. Лебедева, Москва

17:40 ДЕСТРУКЦИЯ ФАРМАЦЕВТИЧЕСКИХ СОЕДИНЕНИЙ В ПЛАЗМЕ ДИЭЛЕКТРИЧЕСКОГО БАРЬЕРНОГО РАЗРЯДА

<u>А. А. Извекова</u>1, Ю. В. Котова¹, Е. Ю. Кввиткова¹, А. А. Гущин¹

¹Ивановский государственный химико-технологический университет, Иваново, Россия

17:50 Синтез микроструктур гексагонального нитрида бора в гиротронном разряде в смесях порошков металл- диэлектрик Т. Э. Гаянова¹, Е. В. Воронова¹, С. В. Кузнецов¹, Е. А. Образцова¹, Н. Н. Скворцова¹, А. С. Соколов¹, В. Д. Степахин¹

¹Институт общей физики им.А.М.Прохорова Российской академии наук (ИОФ РАН), Москва, Россия

18:00 Получение водорода методом плазменного пиролиза углеводородов

<u>С. Д. Попов</u>¹, Д. И. Субботин¹, В. Е. Попов¹, А. В. Суров¹, В. А. Сподобин¹, Е. О. Серба¹, Г. В. Наконечный¹, А. В. Никонов¹

¹ИЭЭ РАН, Санкт-Петербург, Россия

18:10-

Фуршет (ужин)

03.12.2022

08:00

Начало регистрации

09:00 Исследование термической стабильности нанодисперсного кубического карбида вольфрама, полученного плазмодинамическим методом

А. Р. Насырбаев1

¹Национальный исследовательский Томский политехнический университет, Томск,

09:10 ПОЛИМЕРНЫЕ МЕМБРАНЫ С TISIN ПОКРЫТИЯМИ ДЛЯ ПРИЛОЖЕНИЙ СЕРДЕЧНО-СОСУДИСТОЙ ХИРУРГИИ

<u>А. А. Лаушкина</u>¹, Д. В. Сиделёв¹, Е. Н. Больбасов¹ ¹ТПУ, Томск, Россия

09:20 ПРИМЕНЕНИЕ ВАКУУМНО-ДУГОВЫХ ПОКРЫТИЙ НА ОСНОВЕ КАРБОНИТРИДОВ ТИТАНА АЛЮМИНИЯ ДЛЯ ПОВЫШЕНИЯ РЕСУРСА МЕТАЛЛОРЕЖУШЕГО ИНСТРУМЕНТА

К. Н. Рамазанов^{1, 2}, Э. Л. Варданян², <u>В. Р. Мухамадеев</u>², А. Ю. Назаров², И. Р. Мухамадеев²

¹Академия наук Республики Башкортостан, Уфа, Россия

²Уфимский университет науки и технологий, Уфа, Россия

09:30 Лазерное управление светорассеянием на металл-органических нанокристаллах

Ю. А. Кенжебаева¹, В. А. Миличко¹

¹Университет ИТМО, Санкт-Петербург, Россия

09:40 ГАЗОАНАЛИЗАТОР ДИОКСИДА АЗОТА NO2 НА ОСНОВЕ ОРИЕНТИРОВАННОЙ СЕТКИ ВОЛОКОН ОКСИДА НИКЕЛЯ

Р. Р. Гайнуллин¹, Г. Р. Низамеева^{1, 2}, Э. М. Лебедева¹, Н. А. Кузина²

¹Институт органической и физической химии им. А.Е. Арбузова, ФИЦ РАН, Казань, Россия

²Казанский национальный исследовательский технологический университет, Казань, Россия

09:50 Изучение влияния наноструктурированного диоксида циркония на физико-механические свойства карбонитридной циркониевой керамики

Е. Д. Кузьменко¹

¹Томский политехнический университет, Томск, Россия

10:00 Анализ агломерации субмикронных частиц в полимерном композиционном материале на основе полиметилметакрилата В. А. Куклин^{1, 2}, С. А. Карандашов¹, Е. А. Бобина¹, С. В. Дробышев¹, А. С. Смирнова¹, М. П. Данилаев¹

¹Казанский национальный исследовательский технический университет им.А.Н.Туполева — КАИ, Казань, Российская Федерация

²Казанский федеральный университет, Казань, Российская Федерация

10:10 ЛЕГИРОВАНИЕ КОНСТРУКЦИОННОЙ СТАЛИ АЗОТОМ ИМПУЛЬСНЫМ ЛАЗЕРНЫМ ЛУЧОМ

А. Р. Хаиткулов¹, А. В. Асылбаев¹, <u>Р. С. Есипов</u>¹ *ФГБОУ ВО УУНИТ. Уфа. Россия*

10:20 Моделирование продольной структуры тлеющих разрядов постоянного тока в молекулярных газах.

С. И. Елисеев1

¹Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

10:30 Перестраиваемая плазменная антенна

И. М. Минаев¹. О. В. Тихоневич¹

¹Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр «Институт общей физики им. А.М. Прохорова Российской академии наук». Москва. Россия

10:40 Компактный источник холодной плазмы для биомедицинских исследований

Б. Б. Балданов¹

¹Институт физического материаловедения СО РАН, Улан-Удэ, Россия

10:50 ИССЛЕДОВАНИЕ ВЛИЯНИЯ ХОЛОДНО-ПЛАЗМЕННОЙ ОБРАБОТКИ НА ПОВЕРХНОСТНЫЕ СВОЙСТВА СЕМЯН ПШЕНИЦЫ

Б. Б. Балданов¹, Ц. В. Ранжуров¹

¹Институт физического материаловедения СО РАН, Улан-Удэ, Россия

11:00 О причинах нарушения симметрии в плазмохимических высокочастотных емкостных реакторах низкого давления

С. А. Двинин¹, З. А. Кодирзода², О. А. Синкевич³, Д. К. Солихов²

¹Московский Государственный университет имени М.В.Ломоносова, Физический факультет, Москва, Россия

²Таджикский Национальный университет, Физический факультет, Душанбе,

³Национальный исследовательский университет "МЭИ", Москва, Россия

11:10 Распределение потенциала плазмы вдоль открытой стороны прямоугольного полого катода

С. Н. Андреев¹, А. В. Бернацкий¹, В. Н. Очкин¹

¹Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук, Москва, Россия

11:20 Создание мощного горизонтально ориентированного потока плазмы из вещества жидкого электролита

<u>Г. Х. Тазмеев</u>¹, Р. Н. Тазмеева¹, А. А. Калеева², Х. К. Тазмеев¹

¹Набережночелнинский институт КФУ, Набережные Челны, Россия ²Казанский национальный исследовательский технический университет им. А.Н. Туполева. Казань. Россия

11:30-

13:30 Круглый стол совмещенный с кофе-брейком

13:30 Модель струйного ВЧ-разряда в условиях динамического вакуума

А. Ю. Шемахин1

¹Казанский (Приволжский) федеральный университет, Казань, Россия

13:40 Генерация оптических гармоник видимого диапазона в микрокристаллах метал-органических каркасов.

Н. А. Жесткий¹, А. С. Ефимова¹

¹Университет ИТМО, Санкт-Петербург, Россия

13:50 Синтез тонких пленок диборида магния in situ импульсным лазерным напылением

<u>А. А. Йванов</u>¹, А. А. Семиренченков^{1, 2}, И. В. Щетинин³, И. А. Руднев¹, Р. Г. Батулин⁴

¹Национальный исследовательский ядерный университет «МИФИ», Москва, Россия

²ЦФП ИОФ РАН, Москва, Россия

³Национальный исследовательский технологический университет «МИСиС», Москва, Россия

⁴Институт физики, Казанский (Приволжский) федеральный университет, Казань, Россия

14:00 ВЛИЯНИЕ КОНВЕКТИВНОЙ НЕУСТОЙЧИВОСТИ НА АМПЛИТУДУ РАССЕЯННЫХ ВОЛН ПРИ ВРМБ

С. А. Двинин¹, Д. К. Солихов², Д. У. Хобилов²

¹Московский Государственный университет имени М.В.Ломоносова, Физический факультет, Москва, Россия

14:10 Структурные особенности нематика с добавками многослойных углеродных нанотрубок

М. Х. Эгамов¹, Б. И. Махсудов²

¹Худжандский научный центр НАН Таджикистана, Худжанд, Таджикистан

14:20 Газоразрядная обработка водных растворов и суспензий хитозана с целью получения биоактивных продуктов

В. А. Титов¹, И. К. Наумова², А. В. Хлюстова¹, Н. А. Сироткин¹

¹Институт химии растворов им. Г.А. Крестова Российской академии наук, Иваново, Россия

²Ивановский государственный университет, Иваново, Россия

14:30 ОСНОВНЫЕ ГАЗОВЫЕ ПРОДУКТЫ МИКРОВОЛНОВОГО РАЗРЯДА В РАСТВОРЕ ЭТАНОЛА

Т. С. Батукаев¹, Ю. А. Лебедев¹, И. В. Билера¹, Г. В. Крашевская^{1,2}

¹Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва, Россия

²Национальный исследовательский ядерный университет «МИФИ», Москва, Россия

14:40 Получение синтез-газа плазменным риформингом углеводородов

<u>С. Д. Попов</u>1, Д. И. Субботин 1 , В. Е. Попов 1 , А. В. Суров 1 , В. А. Сподобин 1 , Е. О. Серба 1 , Г. В. Наконечный 1 , А. В. Никонов 1

¹ИЭЭ РАН, Санкт-Петербург, Россия

14:50 Исследование плазмохимического нитрования ароматических углеводородов в высокочастотном безэлектродном разряде А. А. Лубин^{1, 2}. А. В. Чистолинов¹. Р. В. Якушин²

¹Объединенный институт высоких температур РАН, Москва, Российская Федерация ²Российский химико-технологический университет им. Д.И. Менделеева, Москва, Российская Федерация

15:00 Растворение силикат-глыбы электрическими разрядами С. А. Глотов

15:10 Оценка влияния дисперсного наполнителя на возможность лазерной гравировки полимерных материалов

А. Д. Ионова¹, Е. П. Любина¹, И. Д. Яковлев¹, Т. Р. Дебердеев¹, А. П. Любина²
¹ФГБОУ ВО"Казанский национальный исследовательский технологический университет", Казань, Россия

²Институт органической и физической химии им. А. Е. Арбузова Казанского научного центра РАН, Казань, Россия

15:20 Физические характеристики пылевой подсистемы термической плазмы с наночастицами металла

<u>И. И. Файрушин^{1, 2}</u>

¹Казанский (Приволжский) федеральный университет, Казань, Россия

²Объединенный институт высоких температур РАН, Москва, Россия

15:30 Особенности обработки титан содержащих металлических порошковых материалов в индуктивно-связанной плазме А. А. Терентьев¹, Р. Ф. Хаматзянов¹, К. Ю. Нагулин¹, И. В. Пикулин², А. Х.

А. А. Терентьев¹, Р. Ф. Даматзянов¹, К. Ю. пагулин¹, И. Б. Пикулин², А. *Л*

¹КНИТУ-КАИ, Казань, Россия ²РФЯЦ-ВНИИЭФ, Саров, Россия

²Таджикский Национальный университет, Физический факультет, Душанбе,

²Таджикский национальный университет, Душанбе, Таджикистан

15:40	Регистрация плазменных неоднородностей с помощью эффекта Тальбота
	С. Ю. Казанцев ¹ , Н. В. Пчелкина ¹ , А. А. Смольский ¹
15:50	¹ Московский технический университет связи и информатики, Москва, Россия Исследование генерации мягкого рентгеновского излучения
15.50	• • • • • • • • • • • • • • • • • • • •
	быстрого капиллярного разряда в азоте А. А. Самохвалов¹-², К. А. Сергушичев¹, А. А. Смирнов¹, Т. П. Бронзов¹, С. И. Елисеев¹-3, Д. В. Гетман¹, Е. П. Большаков¹, А. А. Самохвалов¹-² ¹ООО "Лаборатория им. Бурцееа В.А.", Санкт-Петербуре, РФ ²Университет ИТМО, Санкт-Петербуре, РФ
	³ Санкт-Петербургский Государственный Университет, Санкт-Петербург, РФ
16:00	Исследование фазообразования в слоистой системе Ве-Fe,
	полученной ионно-плазменным напылением А. К. Жубаев¹, Г. Н. Нурболатова¹, А. Г. Омирсерикова¹, <u>Г. А. Рахметолла</u> ¹ ¹Актюбинский региональный университет им.К.Жубанова, Актобе, Казахстан
16:10	ОБОБЩЕНИЕ УРАВНЕНИЕ СОСТОЯНИЯ ДЛЯ РАСТВОРОВ
	ПОДСОЛНЕЧНОГО МАСЛА И Н-ГЕКСАНА
	<u>С. М. Сияхаков</u> ¹
16:20	1ТГПУ имени Садриддина Айни, Душанбе, Таджикистан ВЛИЯНИЕ КОНЦЕНТРАЦИИ МЕТАЛЛА НА ИЗМЕНЕНИЕ УДЕЛЬНОЙ ПОВЕРХНОСТИ, ТЕМПЕРАТУРОПРОВОДНОСТИ И
	ПЛОТНОСТИ КАТАЛИЗАТОРОВ НА ОСНОВЕ ПОРИСТОГО
	ГРАНУЛИРОВАННОГО ОКСИДА АЛЮМИНИЯ
	А. Г. Мирзомамадов¹
	¹ТГПУ имени С.Айни, Душанбе, Таджикистан
16:30-	
17:30	Круглый стол совмещенный с кофе-брейком
17:30-	
19:00	Стендовые доклады
C-38	Моделирование процесса электроискрового упрочнения
	металлических поверхностей
	С. Н. Шарифуллин ¹
	¹Казанский (Приволжский) федеральный университет, Казань, Россия
C-39	МОДЕЛИРОВАНИЕ ВИХРЕВОЙ РЕШЕТКИ В НАНОПЛЕНКЕ
	СВЕРХПРОВОДНИКА ВТОРОГО РОДА
	А. В. Минкин ¹ , <u>С. А. Демин</u> ¹ , В. А. Юнусов ¹
0.40	¹Казанский федеральный университет, Казань, Россия
C-40	Концепция политипных модификаций коаксиальной нанотрубки Д. Н. Валеева ¹ , З. Я. Халитов ¹ , Р. Р. Файзуллин ¹ ¹ КНИТУ-КАИ, Казань, Российская Федерация
C-41	Исследование распределения кремния в плазменно-дуговом
	покрытии на керамической подложке
	И.Г. Даутов ¹ , Г.Ю. Даутов ¹ , А.А. Калеева ¹ , В.А. Селедкина ¹ , О.Е. Поплавская ¹
	¹КНИТУ-КАИ, Казань, Россия
C-42	Плазмохимическая модификация стеклонаполненного
	композиционного материала
	<u>И. П. Ершов</u> ¹ , Л. А. Зенитова ¹
	1ФГБОУ ВО "КНИТУ", Казань, Россия
C-43	Влияние высокочастотной плазменной модификации на
	физико-химические свойства синтетических полимерных
	материалов
	Ю А Тимошина ¹ Э Ф Вознесенский ¹ Ю В Харапулько ¹ А И Тептина ¹

¹ФГБОУ ВО "КНИТУ", Казань, Россия

С-44 ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПЛАЗМЕННОЙ ОБРАБОТКИ НА МЕХАНИЧЕСКИЕ СВОЙСТВА ЭЛЕКТРОИЗОЛЯЦИОННОЙ СТЕКЛЯННОЙ ЛЕНТЫ

М. В. Антонова¹, <u>А. С. Парсанов</u>¹, И. В. Красина¹, Р. Р. Мингалиев¹ 1 ФГБОУ ВО КНИТУ, Казань, РФ

С-45 Распространение жидкостного неоргонического разряда на поверхности материалов

 $\underline{\mathsf{M. \Phi. Axatob^1}}$, А. Г. Каюмова¹, Р. К. Галимова¹, Р. Р. Каюмова¹ ***КНИТУ-КАИ, Казань, Россия*

C-46 Применение плазменной модификации при крашении мехового полуфабриката

<u>А. Р. Гарифуллина</u>^{1, 2}, В. Х. Абдуллина, В. А. Сысоев¹ ¹КНИТУ. Казань. ²КНИТУ-КАИ. Казань.

C-47 Экспериментальное исследование зависимости температуры газа от энергетических параметров тлеющего разряда

Р. Ф. Юнусов¹, А. И. Шатунова¹, Э. Р. Юнусова²

¹Казанский национальный исследовательский технический университет им. А.Н. Туполева, Казань, Россия

²ГАУЗ ГКБ № 7. Казань. Россия

С-48 Изменение поверхности полиэтилена после обработки низтомпературной плазмой с жидкими электродами Р. Р. Марданов¹, Р. Р. Каюмов¹, М. Ф. Ахатов¹, А. Г. Каюмова¹ **

1/KHUTY-КАИ, Казань, Россия

С-49 ИССЛЕДОВАНИЕ СВОЙСТВ ДВУХМЕМЕННОГО ПРОЦЕССА В ДАЛЬНЕМ ПОЛЯ ИНЖЕКЦИОННЫХ ЛАЗЕРНЫХ ВОЛНОВОДОВ НА ОСНОВЕ МНОГОСЛОЙНЫХ НАНОСТРУКТУР

<u>Х. Ш. Джураев</u>¹, Б. И. Махсудов¹, Н. О. Маматкулова¹

¹Таджикский национальный университет, Душанбе, Таджикистан

С-50 ИССЛЕДОВАНИЕ КОЭФФИЦИЕНТА НАБУХАНИЯ ФЛЮОРИТА (Флюоритовый концентрат порошок ФК-70) ПРИ ТЕМПЕРАТУРЕ 314К

Д. А. Зарипов¹, Ш. Т. Зикилоев², М. М. Сафаров¹

¹Таджикский технический университет имени академика М.С.Осими, Душанбе, Таджикистан

²Педагогический колледж им. Хосият Махсумовой Государственного педагогического университета имени С.Айни, Душанбе, Таджикистан

С-51 ВЛИЯНИЕ ФУЛЛЕРЕНА-60 НА ИЗМЕНЕНИЕ ТЕПЛОЕМКОСТИ О-КСИЛОЛА

М. У. Умарализода¹, М. М. Сафаров²

¹Таджикский государственный педагогический университет имени С.Айни, Душанбе, Таджикистан

²Таджикский технический университет имени академика М.С.Осими, Душанбе,

С-52 ТЕПЛОЕМКОСТЬ ЭЛЕКТРОЛИТОВ NaCI ПРИ РАЗЛИЧНЫХ ТЕМПЕРАТУРАХ И КОНЦЕНТРАЦИИ КРЕМНИЕВЫХ ФУЛЛЕРЕНОВ

М. М. Сафаров¹, С. С. Раджабова², М. А. Зарипова¹

¹Таджикский технический университет имени академика М.С.Осими, Душанбе, Таджикистан

²Филиал Московского энергетического института в г. Душанбе, Душанбе, Таджикистан

С-53 ВЛИЯНИЕ ФУЛЛЕРЕНОВ НА ИЗМЕНЕНИЕ ТЕПЛОПРОВОДНОСТИ ТВЕРДЫХ ЭЛЕКТРОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ ПОЛИМЕРОВ

Н. С. Асрорзода¹, М. М. Сафаров¹

¹Таджикский технический университет имени академика М.С.Осими, Душанбе, Таджикистан

C-54 ВЛИЯНИЕ НАНОЧАСТИЦ ЧЕТЫРЕХХЛОРИСТОГО УГЛЕРОДА НА ИЗМЕНЕНИЕ ТЕПЛОПРОВОДНОСТИ ЖИДКОГО БЕНЗОЛА

Ф. А. Сафарова¹, М. А. Зарипова², Т. Р. Тиллоева²

¹Таджикский государственный педагогический университет имени С.Айни, Душанбе, Таджикистан

²Таджикский технический университет имени академика М.С.Осими, Душанбе,

С-55 ТЕПЛО- И ТЕМПЕРАТУРОПРОВОДНОСТЬ ПОЛУПРОВОДНИКА ТЕЛЛУРИДА ГЕРМАНИЯ В СЕГНЕТОЭЛЕКТРИЧЕСКОМ СОСТОЯНИИ

Д. Ф. Собиров¹, М. М. Сафаров²

¹Бохтарский государственный университет имени Носира Хусрава, Бохтар, Таджикистан

²Таджикский технический университет имени академика M.C.Осими, Dushanbe,

C-56 АВТОМАТИЗИРОВАННАЯ СИСТЕМА УПРАВЛЕНИЯ ПРОЦЕССАМИ ЭЛЕКТРОЛИТНО-ПЛАЗМЕННОЙ ОБРАБОТКИ ИЗДЕЛИЙ АДДИТИВНОГО ПРОИЗВОДСТВА

<u>В. В. Постнов</u>1, М. Д. Белов1, А. А. Терентьев1, К. Ю. Нагулин1, А. Х. Гильмутдинов1

¹Казанский национальный исследовательский университет им. А.Н. Туполева, Казань, Российская Федерация

С-57 РАСПРЕДЕЛЕНИЕ ПОТЕНЦИАЛА И ТЕМПЕРАТУРЫ ГАЗА В ПЛАЗМЕ ДУГОВОГО РАЗРЯДА В ПРОЦЕССЕ СИНТЕЗА КРЕМНИЕВЫХ НАНОСТРУКТУР

<u>А. А. Калеева</u>¹, Б. А. Тимеркаев¹, О. А. Петрова¹, А. И. Сайфутдинов¹ ¹КНИТУ-КАИ им. А.Н.Туполева, Казань, Россия

C-58 ЭЛЕКТРОКАТАЛИТИЧЕСКОЕ ВОССТАНОВЛЕНИЕ ВОДЫ НА МАРГАНЕЦСОДЕРЖАЩЕМ НАНОКОМПОЗИТЕ

<u>Е. А. Соловьев</u>^{1, 2, 3}, П. Я. Эндерс^{1, 2, 3}, Т. П. Султанов^{2, 3}, К. В. Холин^{1, 2, 3}

¹Институт органической и физической химии им. А.Е. Арбузова, ФИЦ РАН, Казань, РФ

²Казанский национальный исследовательский технологический университет, Казань, РФ

³Казанский национальный исследовательский технический университет им. А.Н. Туполева, Казань, РФ

С-59 Наноструктурные материалы для электроники и фотоники С. В. Гайнуллина¹

¹КНИТУ-КАИ им.А.Н. Туполева, Казань, Россия

C-60 Гибридные флуоресцентные наноагрегаты на основе катионов d-металлов и тиапроизводных пиллар[5]арена, содержащих пиридиновые фрагменты

<u>В. А. Назмутдинова</u>1, Ю. И. Александрова1, Д. Н. Шурпик1, О. А. Мостовая1, И. И. Стойков $^{1,\,2}$

¹Казанский (Приволжский) Федеральный университет, Химический институт им.А.М.Бутлерова, Казань, Россия

²ФГБНУ Федеральный центр токсикологической, радиационной и биологической безопасности, Казань, Россия

C-61 Модификация стеклоуглерода железосодержащими наночастицами

<u>П. Я. Эндерс</u>^{1, 2, 3}, Е. А. Соловьев^{1, 2, 3}, С. В. Дробышев^{1, 3}, С. Т. Минзанова^{1, 2}, К. В. Холин^{1, 2, 3}

¹Институт органической и физической химии им. А.Е. Арбузова, ФИЦ РАН, Казань, РФ

²Казанский национальный исследовательский технологический университет, Казань, РФ

³Казанский национальный исследовательский технический университет им. А.Н. Туполева, Казань, РФ

С-62 Синтез карбида железа в дуговом разряде, погруженном в мазут.

Б. А. Тимеркаев¹, <u>А. Р. Ямалетдинова</u>¹ *КНИТУ -КАИ. Казань, Россия*

- С-63 Модель положительного столба тлеющего разряда с распределенным расходом газа в цилиндрическом канале И. Г. Галеев¹, Т. Я. Асадуллин¹, Н. П. Германов ¹КНИТУ-КАИ, Казань, Россия
- С-64 Разработка зондовой системы для измерения параметров плазмы и функции распределения электронов в условиях плазменной полимеризации
 С. С. Сысоев¹, А. И. Сайфутдинов², Д. Д. Гущин²
- 1-СП6ГУ, Санкт-Петербург, Россия 2-КНИТУ-КАИ им. А.Н. Туполева, Казань, Россия

 С-65 МАГНИТНАЯ СТРУКТУРА ХРОМОВЫХ СУЛЬФОШПИНЕЛЕЙ ПРИ

 ДИАМАГНИТНОМ ЗАМЕЩЕНИИ

Р. К. Губайдуллин¹, И. И. Искандаров ¹КНИТУ-КАИ им. А.Н. Туполева, Казань, Россия

С-66 Сравнительный анализ динамики плазмы СВЧ-разрядов в гепии и азоте

А. И. Сайфутдинов¹, Е. В. Кустова²

 1 КНИТУ-КАИ, Казань, Россия 2 Санкт-Петербургский государственный университет

C-67 Численное исследование дуговых микроразрядов в гелии атмосферного давления

А. Р. Сорокина¹, А. А. Абдуллин¹, <u>А. И. Сайфутдинов</u>¹

¹КНИТУ-КАИ им. А.Н.Туполева. Казань. Россия

- С-68 Моделирование тлеющего разряда с микрополым катодом Х. . Нуриддинов¹, <u>А. И. Сайфутдинов</u>¹ ¹КНИТУ-КАИ им. А.Н.Тулолева. Казань. Россия
- С-69 Параметрический анализ продуктов конверсии малых примесей этанола в тлеющем микроразряде в аргоне Н. П. Германов¹, А. И. Сайфутдинов¹, А. Р. Ямалетдинова¹, А. А. Сайфутдинова¹

 1 КНИТУ-КАИ им. А.Н.Туполева, Казань, Россия
- C-70 Одномерная модель микроволнового разряда в молекулярных газах

<u>А. И. Сайфутдинов</u>¹, А. Р. Мардеев¹, А. А. Галиев¹, А. А. Сайфутдинов¹ ¹КНИТУ-КАИ им. А.Н.Туполева, Казань, Россия

С-71 ИСПОЛЬЗОВАНИЕ СПЛАЙН-ИНТЕРПОЛЯЦИИ ДЛЯ РАСЧЁТА СЕЧЕНИЯ РАССЕЯНИЯ МЕЖМОЛЕКУЛЯРНОГО ВЗАИМОДЕЙСТВИЯ

Р. Р. Таксеитов¹, Р. К. Галимова¹, Я. З. Якупов¹

¹КНИТУ- КАИ, Казань, Россия

- С-72 МЕССБАУРОВСКИЕ ИССЛЕДОВАНИЯ ОБРАЗОВАНИЯ НАНОКЛАСТЕРОВ В ТВЕРДЫХ РАСТВОРАХ НА ОСНОВЕ СиСr2S4 Р. К. Губайдуллин¹ ¹КНИТУ-КАИ им. А.Н. Туполева, Казань, Россия
- С-73 **Характеристики слоя положительного в ВЧ емкостном разряде** Е. Н. Лазарев^{1, 2}, <u>В. С. Желтухин</u>^{2, 3}, В. Ю. Чебакова²
 ¹КНИТУ, Казань, Россия ²КФУ, Казань, Россия ³КНИТУ-КАИ, Казань, Россия
- C-74 Формирование микро- и наноструктур при воздействии гетерогенных плазменных потоков

В. Д. Сарычев 1 , <u>С. А. Невский</u> 1 , А. Ю. Грановский 1 , В. Е. Громов 1

¹Сибирский государственный индустриальный университет, Новокузнецк, Россия